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A model of stable, subcritical growth of through-cracks in thin plates under a 
monotone as well as a cyclic loading are considered. Viscoelastic properties 
of the material are taken into account, and the plastic region, in the Dugdale 

formulation, is assumed small. 

1. M o n 0 t o n e 1 o a d i n g. We consider a rectilinear through-crack in a 
thin elastic or viscoelastic plate. We assume that the Dngdale hypothesis holds so that 
the plastic deformations are concentrated in an infinity thin layer projected in the 

direction of the crack and the length 
of the plastic zone R is very small 

compared with the length of the crack 1 
(see Fig. I which depicts the neighbor- 
hood of the tip of the crack), when 

the external tensile laod perpendicular 
to the crack is increased, the length 

R of the plastic zone will also increa- 

se and the tip of the crack will move 

along the plastic zone, The external 
loads will always be assumed subcriti- 

cal, so that the crack growth is stable. 
First we consider the case of mon- 

otone loading. The irreversible work 

Fig. 1 

done at some control point P of the 

plastic zone in time Sr preceding 

the fracture, is given by 

Here the time a = t corresponds to the instant of fracture at the point P, (r (x, T) 

is the normal stress at the point P on the surface oriented along the z -axis which 

coincides with the crack, and up* (r, T) denotes the rate of displacement of the 

upper edge of the palstic zone at the point P , along the normal to the 5 -axis. 

The time at is assumed sufficiently short for the condition 
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to hold. Here A denotes a structural constant of the material, of the “Neuber 

particle” type. In physical terms, the integral (1.1) is assumed to describe the total 
amount of deformation at the point P over the time 6t prior to failure. 

Assuming that CJ (2, t) is Constant in the zone A and, that the displacement over 

the time 6t is equal to a specified critical opening of the crack U,,, we obtain 

from (1.1) 

(1.2) 

Here the variables x and t are replaced by the distance from the crack tip ~1 and 

the size of the plastic zone R, both being unknown functions of time. Since r = 

x1 + 1 (see Fig. 1) and the value of 5 for the control point p is fixed with respect 

to time,we can replace 13 / a~, by (--a / 80 and 6q by (-Sl). 

For a material which is elastic outside the plastic zone, the displacement uP is 
given by 

45 R 
u, (x1, R) -.= -& (If 1 +1/1-x1/H 

I+-&In _ 
1 

(1.3) 
1--T/l-x2,/N 

where (5, denotes the yield point and E is Young’s modulus. In this case the crit- 
erion (1.2) becomes 

dR nEU,, 

ill 
.._ - - $ 

r,TSA C 
(1.4) 

Integrating this equation we obtain a curve depicting the resistance against the 
crack growth. Cherepanov was first to construct such a curve analytically, using 

his energetic theory developed in Cl]., In order to assess the effect of growth pre- 

dicted by equation (1.4), it is sufficient to compare the size of the plastic zone K, 

at the initial instant of crack formation 

TCE 
R, = F uo 

(1.5) 

with the maximum value R,for the size of the plastic zone corresponding to the stat- 
ionary stage of the crack growth when dR / dl = 0 

A 
Rm = 4 “P 

nEU, 
--I) 25,A 

(1.6) 

Since UO - A, the Ratio R, / R,, is small for the typical quantity o,l E, 
Next we assume that the material outside the plastic zone is linearly viscoelastic, 

i. e. 

t t ,. 
si,j = G,(t-+--&--ddt, 

\ 
dei j (‘) 

a= 

; 
c de (7) (1.7) 

; 

G,(t--z) Fdt 

Here Si,j and ei j are the deviators, while o and E are the first invariants 
of the stress and deformation tensors, respectively, Gi (1) is the modulus of relaxa- 
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tion for pure shear and G, (t) is the modulus of relaxation for pure compression. 
In this case the displacement UP is given by the formula 

Up(xl, R) = U,*{q(t), R(t)) -1-1 ‘(‘--‘) 
lo Q (0) CT,” {q (t), R (z)} dt (1.H) 

Here the lower limit to coincides with the instant of time at which the control point 
P’ enters the plastic zone, the superscript ’ denotes the elastic component of the 

displacement UP and the function Sz (t) has the form 

51 (t) = L-1 2 12G” tq + G2 (S)] 
s-d S” [G,*(S) f 2G$ (S) G,+ (s)] 

(1.9) 

where the asterisk denotes a haplace tra~form and L-1 its inverse. 

Using (1.8) we can reduce the criterion (1.2) to the form 

+ = (2) (2) -f (I + 1nF) - R i**(t)] 52-1(O) (1.10) 

The influence of the viscoelastic deformations on the stable growth of cracks is given 
by the last term of (1. lo), or more accurately, by the increment 6n (t) = D (6+-L? 

(0). 
Expanding the function @ (st) into a series, we obtain the relation connecting 

it with the rate of change of the size of the plastic zone, and the rate of loading Q’ 

Finally, we write the equation (1.10) in the form 

If f‘? f3 

Fig. 2 

The parameter C haa a substantial 

inflnence on the resistance to the crack 

growthJig, 2 shows the results of numerical 
integration of <&11) in terms of the dimen- 
sionless load Q = 3to / (20,) and dimension- 

less crack length 1 i R, for several 

fixed values of the parameter h = El / (21) 
(arrows indicate the onset of instability). 
The curves 1 -3 correspond to the values 

of h =0.6, 0.4and 0.6. 
For the materials insensitive to change 

in the rate of loading, i.e. when C = 0, 
the equation (1.11) becomes (1.4). We note 

that the curve depicting the resistance to 
the crack growth becomes the universal 

curve, i. e. the form of the curve depends 
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neither on the geometry of the sample, nor on the initial length of the crack, only 

when C = 0 . The existence of such a universal curve was predicted by Rice [2] 

for the longitudinal shear cracks, and by Cherepanov for the normal fracture cracks 
[l]. Clearly, the universality is violated as soon as the material becomes responsive 
to the loading rate. 

when the loading, the form of the sample and the location of the crack are all 
given, the relationship connecting R with 1 and Q can be assumed known. It 

follows that the expression (1.11) represents a first order ordinary differential equat- 
ion connecting the crack length L with the dimensionless load Q. 

2. Cyclic loading. We consider the growth of fatigue cracks as a 

sequence of slow growth intervals each of which is described by the equation (1. 11). 

Integrating this equation over a single loading cycle, we obtain the incremental crack 
growth over a single cycle 

R max 8 
dl = 

s 
R 

f’dH-+ CR ($+)-%‘dR 

min 
(2.1) 

F == (‘it In (R,/R) + CR (8RjaZ) (i3R/aQ)-1)-l 

Since the crack length does not alter appreciably during a single cycle, it is assumed 
to be constant in (2.1). In this case the variable of integration R can be replaced 

by Q- 
We note that the first integral in (2.1) extends over the ascending portion of the 

cycle only, while the second integral covers the complete cycle, This implies a 

different physical interpretation for each term involved. The first integral accounts 

for the slow growth of the crack which can only occur during the period of active 
loading. The second integral is governed by the viscoelastic behavior of the material 

and therefore some growth can occur at the sustained load or even at the decreasing 

load. If we therefore decompose the cycle into an ascending (0 Q t 6 T / 2) and 

descending (T / 2 < t < 2’) branches, then the incremental crack growth over the 

above segments is given by the expressions 

Qmax 

(dZ)+= \ j$jFdQ 

Qmin 

(2.2) 

(dZ)_ = f [+, F dt 

T/Z 

The integrals (2.2) can be computed for any given loading regime Q = Q (t). The 
first integral can be evaluated in terms of the maximum and minimum load levels 
within the cycle without knowing the precise dependence of Q on time. The com- 
putation of the second integral in (2.2) however requires the knowledge of the function 

Q (t). 
We illustrate the application of the above relations by computing the rate of grow- 

th of an isolated fatigue crack in an infinite plate. From (2.2) we obtain the follow- 
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ing expression for the growth of a fatigue crack: 
Qmax 

(dl), = 1 s i BQ2 
24+77) CdQ 

Q min 

(543) 

G = (In (2RW/lQa) - Q2)-1 

Qmax 

(dl)_ = CQ’Z 

Q 
s ($t) G dQ 

min 

dl 
-- 
dN -’ 2aQ + -$j GdQ 

Here N is the number of cycles, the coefficient a is equal to one for the ascend- 

ing part of the loading cycle, and to zero for the descending part. 

Fig. 3 

Fig. 4 
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Figures 3 -5 depict some of the results of computing the integral (2.3) in the 
case when the cyclic loading is a simple sawtooth-like function 

(--nT+t)Q’, nTdtd(2n-C l)T/Z 
Q(l)={(nT-f)Q’, (Zn+l)T/2&T(n+i) 

In Fig. 3 the dimensionless crack length I/ R, serves as the abscissa and the dimen- 
sionless load Q as the ordinate, The numerical integration was carried out using 
the Runge -Kutta subroutine. The loading frequency chosen was o = 5sec .-l (Q’ 

= n-‘sec.-l), B = 0.1 (here B = CQ’), Qmin = 0.1, 0.2 and 0.3, Q,,, = 0.2, 
0.3 and 0.4 (the corresponding curves are 1 --3). As we see, the growth of a fatigue 

crack is strongly asymmetric already within a singe cycle. 

The contribution of the descending branch becomes more pronounced at higher 

loading levels and larger values of the parameter C. 

Figure 4 depicts the growth of a fatigue crack as a function of the number of cycles 
N. Fig. 5 shows the dependence of the rate of crack growth on the amplitude of the 
stress intensity coefficient AK = x,nas - K min(the quantity In (AK / K, is plotted 

along the abscissa). The loading conditions in the figures 3 -5 are identical. The 

last graph uses logarithmic coordinates. We note that the graphs in Fig, 5 are nearly 
linear over a certain range. The slope of this straight line segments is nearly equal 
to 4.0, in accordance with the Paris law. 

We check the Miner’s law of cumulative damage by constructing two programs 
of investigation under a variable load. The results are given in the table and comple- 

a 
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Fig. 5 

tely confirm the Miner’s law. The results 

obtained under the extremal conditions 

of loading are considered separately. 
Let a cyclic loading be applied first 

with Ni ! Nf = 150/202 ( Nf denotes 

the life of the sample, i. e. the number 

of cycles prior to failure, and Ni is the 

current number of cycles), at the lowest 

level of loading (0.1 < Q 6 0.2 andB = 1). 
Next, a half of the cycle is applied at 
the highest level of loading (0.3 < Q < 

0.4). This gives ZNi ! Nf = 0.743. 
Thus the deviation from the Miner’s law 
is this case about 26%. 

Let now a cyclic loading be applied 
with Ni / Nf = 22 ! 22 , at the high- 

est level of loading (0.3 < Q < 0.4 

and B = I). This is followed by 52 
additional cycles at the lowest loading level (0.1 < Q \c 0.2j. Then ZNi / Nf= 
1.26 (deviation from the Miner’s law is again 2670). The above cases produce results 

with relatively large deviations from the Miner’s law. Nevertheless, bearing in mind 
the fact that the above results are highly specific, in should not be assumed that ZNi 
1 flf differs much from unity. 
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Table 1 

0.98s 

0.981 

1.003 

Q 

0.3-0.4 

0.2-0.3 

0.1-0.2 

- 

I - 
- 

I - 
0.01 
0. 1 

1 .o 
0.01 
0. I 
i .o 
0.01 
0.1 
1.9 

48 
43 
22 

110 
102 
59 

311 
292 
202 

Ni 

12 
11 
6 

20 
1s 
11 

120 
113 

17 

rNi / “f 

1.0267 

1.0282 

1.0285 

Ni 

28 
25 
13 
19 
17 
10 
12 
68 
49 

The results obtained represent a further development of [3 -61. Recently, the 
author obtained (*) an equation resembling formally (1.4) but valid also in the case 
when the size of the plastic zone is arbitrary. In the present case the equation differs 
from (1.4) only by the presence of a factor R/I in the right hand side. The equation 
can be integrated in closed form and gives 

i. e. ho depends on the geometry and comliance of the material. 

In conclusion the author thanks Prof. Juricic for writing the computational programs. 

REFERENCES 

1. C h e r e p a n o v G. P. On the growth of cracks under cyclic loading. PMTF, 
No. 6, 1968. 

2. R i c e J. R Mathematical analysis in the mechanics of fracture. In: Flacture, 

Vol. 2. N. Y., Acad. Press., 1968. 

3. w n u k M. P. Prior-to-failure extersion of flows undermonotonic and pulsating 

loadings. J. Engng Fracture, Mech., Vol. 5, p. 379-39’7, 1973. 

4. w n u k M. p. Slow growth of cracks in a rate sensitive tresca solid. J. Engng 
Fracture Mech., Vol. 5, No. 3, 1973. 

*) Wnuk M. p. Stable and unstable cleavage fracture in fully yielded components. 

NSF Progress Report. S. Dakota State Univ., June, 1973. 



Subcritical growth of cracks 823 

5. w n u k M. P. Quasi-static extension of a tensile crack contained in a viscoelas- 
tic-plastic solid. Trans. ASiiE J. Appl. Mech. Ser. E, Vol. 41, p 234 - 
242, 1974. 

6. w n u k M. P. Fatigue in rate sensitive solids, Internat. J. Frachture Mech., 
vol. 10, No. 2, p. 223 -226, 1974. 

Translated by L. K. 


